skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Campbell, Joshua"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This letter presents a versatile design method for achieving precise frequency and bandwidth control of compact acoustic filters monolithically at millimeter wave (mmWave) in transferred thin-film lithium niobate (LiNbO3). Prototypes are implemented with lateral field excited first-order antisymmetric (A1) mode bulk acoustic resonators (XBARs). The design leverages the in-plane anisotropy of the e15 piezoelectric coefficient in 128° Y-cut LiNbO3, enabling monolithic control of electromechanical coupling ( k2 ) by simply rotating the resonator layout. This allows for filters with customizable fractional bandwidths (FBWs). Additionally, fine-tuning of the center frequency ( fc ) is achieved through selective trimming of the film for series and shunt resonators, enabling a single design to be scaled across frequencies with enhanced fabrication tolerance. To validate the approach, we designed and fabricated a filter centered at 18.6GHz, achieving a low insertion loss (IL) of 1.84 dB, and a precise designed FBW of 9.5%. This platform shows a significant promise for enabling a monolithic filter bank with precise band selection, paving the way for the next generation of mmWave acoustic filters. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  2. Hasegawa, Yasuhisa (Ed.)
    Advancing robotic grasping and manipulation requires the ability to test algorithms and/or train learning models on large numbers of grasps. Towards the goal of more advanced grasping, we present the Grasp Reset Mechanism (GRM), a fully automated apparatus for conducting large-scale grasping trials. The GRM automates the process of resetting a grasping environment, repeatably placing an object in a fixed location and controllable 1-D orientation. It also collects data and swaps between multiple objects enabling robust dataset collection with no human intervention. We also present a standardized state machine interface for control, which allows for integration of most manipulators with minimal effort. In addition to the physical design and corresponding software, we include a dataset of 1,020 grasps. The grasps were created with a Kinova Gen3 robot arm and Robotiq 2F-85 Adaptive Gripper to enable training of learning models and to demonstrate the capabilities of the GRM. The dataset includes ranges of grasps conducted across four objects and a variety of orientations. Manipulator states, object pose, video, and grasp success data are provided for every trial. 
    more » « less
  3. Abstract Tolerancing began with the notion of limits imposed on the dimensions of realized parts both to maintain functional geometric dimensionality and to enable cost-effective part fabrication and inspection. Increasingly, however, component fabrication depends on more than part geometry as many parts are fabricated as a result of a “recipe” rather than dimensional instructions for material addition or removal. Referred to as process tolerancing, this is the case, for example, with IC chips. In the case of tolerance optimization, a typical objective is cost minimization while achieving required functionality or “quality.” This article takes a different look at tolerances, suggesting that rather than ensuring merely that parts achieve a desired functionality at minimum cost, a typical underlying goal of the product design is to make money, more is better, and tolerances comprise additional design variables amenable to optimization in a decision theoretic framework. We further recognize that tolerances introduce additional product attributes that relate to product characteristics such as consistency, quality, reliability, and durability. These important attributes complicate the computation of the expected utility of candidate designs, requiring additional computational steps for their determination. The resulting theory of tolerancing illuminates the assumptions and limitations inherent to Taguchi’s loss function. We illustrate the theory using the example of tolerancing for an apple pie, which conveniently demands consideration of tolerances on both quantities and processes, and the interaction among these tolerances. 
    more » « less
  4. Rotation manipulation tasks are a fundamental component of manipulation, however few benchmarks directly measure the limits of a hand's ability to rotate objects. This paper presents two benchmarks for quantitatively measuring the rotation manipulation capabilities of two-fingered hands. These benchmarks exists to augment the Asterisk Test to consider rotation manipulation ability. We propose two benchmarks: the first assesses a hand's limits to rotate objects clockwise and counterclockwise with minimal translation, and the second assesses how rotation manipulation impacts a hand's in-hand translation performance. We demonstrate the utility of these rotation benchmarks using three generic robot hand designs: 1) an asymmetrical two-linked versus one-linked gripper (2v1), 2) a symmetrical two-linked gripper (2v2), and 3) a symmetrical three-linked gripper (3v3). We conclude with a brief comparison between the hand designs and a observations about contact point selection for manipulation tasks, informed from our benchmark results. 
    more » « less